

ELECTROCHEMICAL POLISHING OF ALUMINUM IN CHOLINE CHLORIDE BASED IONIC LIQUIDS

Andreea Florea¹, Cristina Stoica², Adrian Manea², Liana Anicai²

¹CESTRIN – Center for Road Technical Sudies and Informatics, Road Laboratory, Romania ²Center of Surface Science and Nanotechnology, University POLITEHNICA Bucharest, Romania

Motivation

Electrochemical polishing represents a clean way to obtain micro-smooth, contaminant free metallic surfaces without producing any thermal or physical distortion. The standard processes for AI electropolishing involve the use of electrolytes containing mixtures of strong inorganic acids, sometimes working at relatively high temperatures. In the last years, a green chemistry based on ionic liquids gained a wide recognition as potentially benign solvents and widespread application.

Recently it has been shown the possibility of formation of ionic liquids from eutectic mixtures of quaternary ammonium salt such as choline chloride (2-hydroxy-ethyl-trimethyl ammonium chloride) with a hydrogen bond donor species such as amides, glycols or carboxylic acids. These media, also known as "deep eutectic solvents (DES)" are characterized by good air and water stability. They are potentially recyclable, biodegradable and with no harm on human health

Thus, the present paper presents some preliminary experimental results regarding the electrochemical polishing of aluminum in choline chloride based ionic liquids.

Experimental details

- Electropolishing experiments have been performed in a two-electrode cell, using a direct current power supply (0-5A, 0-60 V);
- -Al electrodes (Al foil #0.2 mm; Al strip #0.5 mm; Al rod \$\$\phi\$5.5 mm) of 99.5 purity have been used, against a stainless steel counterelectrode:
- -- Operating temperatures in the range of: 5-85°C, for different periods between 1-30 min.; -Linear polarization curves at 20 mV/s have been recorded involving an AUTOLAB PGSTAT 12

equipment; - The electrochemical cell included a WE- AI, an Ag wire as a guasi-reference electrode and a Pt counterelectrode

Ionic liquid systems used for AI electrochemical polishing

System type	Electrolyte composition		
ILEG	ChCI:EG 1:2 molar ratio		
ILEG -OxAc	ILEG + 3% oxalic acid		
ILEG-VOSO ₄	ILEG +2% VOSO4		
IL	ChCl:urea 1:2 molar ratio		
IL-OxAc	IL + 3% oxalic acid		
IL-VOSO4	IL + 2% VOSO ₄		
*ChCl-choline chloride; EG-ethylene glycol; OxAc- oxalic acid; VOSO4-vanadyl sulfate			

ILEG-OxAc system

ILEG-VOSO₄ system

Comparative SEM micrographs of electropolished AI using ILEG-OxAc

RESULTS AND DISCUSSION

IL type	Al substrate type	Current density, A/dm ²	Temperature, °C	Time, min.	Surface Appearance	
ILEG	Al strip	5	7-8	6	Bright	
		10	7-8	6	Smoothed, dull	
ILEG-OxAc	Al strip	4	14	6	Very bright	
		8	27	0.5-1	Dull	
		3.3	7	5	Bright	
	Al foil	3.3	17	10	Bright	
		4	3-12	10	Bright	
ILEG-VOSO4	Al strip	4	3-14	10	Bright	
Al fo	Al foil	3.3	20-30	15	Bright	
	Pi IOI	15	40-50	7	Surface leveling, nonhomogeneous bright	
IL	Al strip	4-6	45-85	5-6	Etched surface	
IL-OxAc	Al strip	3-3.5	70-90	5-10	Surface leveling, dull	
		2-2.5 (constant voltage)	70	10-20	Bright	
IL-VOSO4	Al strip	1-2	25-30	5-10	Dull surface with white spots	
		1-2	60-70	5-10	Dull surface with white spots	

	system at 5 °C, 5 min. 4 A/dm² (right) and bare AI (left) surfaces

(A)

0.02

0.015

(A) Linear 250

(B)

LEG LEG-VOSO

100 150 200 250 3

0.03

2 0.01

polarization curves for AI foil electrode in different ionic liquid systems, at 20 mV/s; (B) I-t transients at 1V/Ag wire ref.

> (A) Linear polarization curves for AI rod electrode in different ionic liquid systems, at 20 mV/s; (B) I-t transients at 1V/Ag wire ret

CONCLUSIONS

cloride based ionic liquids may represent a potential environmental friendly viable alternative for aluminum electrochemical ng: selection of the optimum working parameters is closely related to the AI bare metal characteristics (e.g. purity, composition, urgical treatments, heat treatment, etc.); re investigations are scheduled for a deeper understanding of the mechanism in the presence of different additives and a better zation of the main parameters (e.g. temperature, current density, time) against the involved ionic liquid composition.

Acknowledgments, We acknowledge funding from NANOCOATIL project under M ERA Net Program and IONLICSURF project under PARTNERSHIP-PNCDI II Program.